An Unaccounted Pathway for Rapid Aging of Atmospheric Soot

Alexei Khalizov, Ella Ivanova, <u>Egor Demidov</u>, Ali Hasani, Jeffrey Curtis, Nicole Riemer, Gennady Gor

Fractal nature of soot

CURVATURE > 0 condensation resisted

Fractal nature of soot

CURVATURE > 0

condensation resisted

CURVATURE < 0

condensation promoted

Experiment – aging of soot by capillary processing

Experiment – aging of soot by capillary processing

Experiment – aging of soot by capillary processing

Step 1: capillary condensation of trace chemical

$$\frac{dV}{dt} \propto p_{\rm sat} \left(s - \exp\left[\frac{1}{2}\ell_{\rm K}{}^{\rm K}\right] \right)$$

Step 2: water vapor absorption

$$p^{\mathsf{RH}} = p(V_{\mathsf{H}_2\mathsf{O}}) \exp\left[\frac{1}{2}\ell_{\mathsf{K}}\mathsf{K}\right]$$

Step 2: water vapor absorption

$$p^{\mathsf{RH}} = p(V_{\mathsf{H}_2\mathsf{O}}) \exp\left[\frac{1}{2}\ell_{\mathsf{K}}\mathsf{K}\right]$$

- Compaction increasing with relative humidity
- Consistently, model predicts increasing filling angles

10

Assessing the role of capillary condensation in the atmosphere

[1] Bhandari, Janarjan, et al. "Extensive soot compaction by cloud processing from laboratory and field observations." *Scientific reports* 9.1 (2019): 11824.

[2] Chen, Chao, et al. "Effect of organic coatings derived from the OH-initiated oxidation of amines on soot morphology and cloud activation." *Atmospheric Research* 239 (2020): 104905.

Assessing the role of capillary condensation in the atmosphere

- Field and chamber studies observed compact soot particles lacking visible coatings^{1,2}
- We hypothesized that those results could be explained by cloud processing enabled by capillary condensation of trace chemicals

- [1] Bhandari, Janarjan, et al. "Extensive soot compaction by cloud processing from laboratory and field observations." *Scientific reports* 9.1 (2019): 11824.
- [2] Chen, Chao, et al. "Effect of organic coatings derived from the OH-initiated oxidation of amines on soot morphology and cloud activation." *Atmospheric Research* 239 (2020): 104905.

Coupling between PartMC-MOSAIC and MCCCM

Coupling between PartMC-MOSAIC and MCCCM

Implications for atmospheric processing

- PartMC-MOSAIC rural scenario
 - Soot emitted in an urban area at night
 - Travels over a forested area

Implications for atmospheric processing

- PartMC-MOSAIC rural scenario
 - Soot emitted in an urban area at night
 - Travels over a forested area
- Aging by oxidation products of biogenic monoterpenes
 - α-pinene
 - limonene

Gas-phase concentrations throughout the day

 Gas-phase concentrations of condensable compounds increase during daytime

Gas-phase concentrations throughout the day

- Gas-phase concentrations of condensable compounds increase during daytime
- Total saturation ratio lags behind because it is controlled by air temperature

Trace chemical condensation – representation comparison

Trace chemical condensation – representation comparison

Trace chemical condensation – representation comparison

Conclusions

- Capillary condensation can explain experimental observations of compact bare soot
- More particles get activated in a shorter time when fractal morphology is accounted for
- Capillary condensation needs to be incorporated into aerosol models explicitly

Download these slides and manuscript preprint

Acknowledgements

Appendix A: capillary condensation model

$$\begin{split} \frac{dV}{dt} &= \frac{1}{4} A \alpha \nu_{\rm T} \frac{V_{\rm m} \rho_{\rm sat,b}}{N_{\rm A} R_{\rm g} T} \left(\nu - \beta \exp\left[\frac{1}{2} \ell_{\rm K} \kappa\right] \right) \\ \nu_{\rm T} &= \sqrt{\frac{8 R_{\rm g} T}{\pi M}} \qquad \beta = \frac{p_{\rm sat,p}}{p_{\rm sat,b}} \\ \ell_{\rm K} &= \frac{2 \gamma_{\rm LG} V_{\rm m}}{R_{\rm g} T} \qquad \nu = \frac{p_{\rm gas}}{p_{\rm sat,b}} \end{split}$$

24

Appendix B: coating mean curvature

25

Appendix C: kappa hygroscopicity theory

 $\kappa = \frac{4A^3}{27D_d^3 \ln^2 S_c}$ $A = \frac{4\sigma_{\rm s/a}M_{\rm w}}{RT\rho_{\rm w}}$

Appendix D: size distribution of BC

